If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-16x-28=0
a = 2; b = -16; c = -28;
Δ = b2-4ac
Δ = -162-4·2·(-28)
Δ = 480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{480}=\sqrt{16*30}=\sqrt{16}*\sqrt{30}=4\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{30}}{2*2}=\frac{16-4\sqrt{30}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{30}}{2*2}=\frac{16+4\sqrt{30}}{4} $
| -3(2+6n)=-8(n-8) | | -12=3+k-8 | | 1/10(x+55)=-2(2-x) | | 13+17=-3(9x-10) | | 2(x+4)/2=-12-2x | | .6x-5=-2+.2 | | 8s+3(12−7s)=49 | | 10=7x+5 | | 6g+3=6g | | 30x-13-2(17-3x)=2(4,5-26)+21x-3 | | 15=-2n+5n | | 2x–11=65 | | (6x+9)°+(4x-19)°=180 | | --1/5t=7 | | 8-2f=-2f | | 12-4=12x | | -3+6w=4w-13 | | (3x+1)(4x-7)=85 | | X^3-3x=37 | | -(v-4)+5v=5(v-1) | | 24=15p-6 | | -8+25=4x+85 | | -3.2x+9=2.6 | | 8p-20=5p-(6-5p) | | 7x-3x+8=4 | | (7x-4)+(19)=(10x+3)=52 | | 9-6w=5 | | -87x+-1=21 | | (4x+4)+(2x-16)=180 | | 5x-9=33-3x | | 2(u-5)=18 | | -y-6-11=7 |